
MÉCANIQUE DES MILIEUX CONTINUS BS - SGC - EPFL
Séance d’exercice n°7 Lausanne

Problèmes de mécanique continue : correction

Exercice 1 : Contraintes (Examen 2013)

Dans un milieu continu, le champ de contraintes dans le système d’axes (0,x1,x2,x3) est donné par

[σij ] =

 x21x2 x1(1− x22) 0
x1(1− x22)

1
3(x

3
2 − 3x2) 0

0 0 2x23

 (1)

Déterminez :

1. La force volumique pour que les équations d’équilibre soient satisfaites en tout point.

2. Les contraintes principales en P (a,0,2
√
a) où a > 0.

3. La contrainte de cisaillement maximale en P .

4. Dessinez le cercle de Mohr en P .

5. Calculer les valeurs propres du déviateur du tenseur des contraintes sij = σij − 1
3σkkδij en P .

Solution :

1.
∂σij

∂xi
+ bj = 0 ⇒ b1 = b2 = 0, b3 = −4x3.

2. Les contraintes principales en P (a,0,2
√
a) où a > 0 sont σI = 8a, σII = a, σIII = −a.

3. La contrainte de cisaillement maximale en P vaut τmax = ±σI−σIII
2 = ±4.5 a

4. Voir le cercle de Mohr en P Figure 1.

Figure 1 – Correction exercice 1 question 4

5. On calcul les valeurs propres du déviateur du tenseur des contraintes sij en P dans la base propre

sij = σij −
1

3
σkk = σij −

8

3
a (2)

⇒ sI = σI −
8

3
a =

16

3
a, sII = σII −

8

3
a = −5

3
a, sIII = σIII −

8

3
a = −11

3
a (3)



Exercice 2 : Contrainte et critères de rupture (Examen 2011)

Une barre de diamètre d est chargée axialement par une charge P=45000N (voir figure 2).

1. Le matériau de la barre a une limite à la rupture en cisaillement de τo = 12× 106 N
m2 .

En construisant un cercle de Mohr, calculer le diamètre en dessous duquel la barre casse en cisaille-
ment. Sur quel plan cette rupture se propage t-elle ?

2. Un autre ingénieur décide d’envisager de changer de matériaux pour passer à un critère de rupture
octahédrique (avec le même τo)

σoct =

√
2

9

(
I21 − 3I2

)
< τ0 (4)

ou I1 = tr(σ) et I2 =
1
2

(
tr

(
σ2

)
− tr (σ)2

)
avec σ tenseur des contraintes de Cauchy.

Ce critère est-il plus ou moins contraignant ?

Figure 2 – Geométrie de la barre

Solution :

1. En regardant le cercle de Mohr (voir Figure 3), nous trouvons :

σI = 2τ (5)

Dans le cas critique, ceci devient :

4P

d2critπ
= 2τ0

dcrit =

√
2P

τ0π

La rupture se propage sur un plan qui a un angle β = α
2 = 45◦.

Figure 3 – Solution pour cercle de Mohr
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2. Calculons les invariants

I1 =
4P

d2π
I2 = 0

Nous trouvons alors :

σoct =

√
2

3

4P

d2octπ
= τ0

doct =

√√
2

3

4P

πτ0
(6)

Ce critére est moins contraignant que le premier

doct
dcrit

=

√
2
√
2

3
< 1

Exercice 3 : Problème de l’examen 2010

Un jeune ingénieur se voit attribuer la mission de dresser une analyse en contrainte d’un barrage. La
géométrie du problème est 2D avec pour section du barrage le triangle OAB, comme sur le schéma suivant :

Par convention, l’origine des axes est le point O présenté sur le schéma. Afin d’alléger les calculs, on choisira
l’angle β égal à 45◦. On suppose que la surface OA du barrage est libre de contrainte, et que l’eau atteint
le sommet du barrage (hauteur h). Notons également que la surface AB est encastrée. Enfin, on dénote par
ρb la masse volumique du barrage.

1. L’ingénieur s’attarde tout d’abord à évaluer la contrainte imposée par l’eau sur le barrage. En faisant
l’hypothèse que ce fluide admet un état de contrainte dit hydrostatique on a :

σeau = −Phydro · I (7)

où le scalaire Phydro est la pression hydrostatique.
Ecrivez les équations d’équilibre sur un volume infinitésimal d’eau afin de déterminer Phydro en

fonction de x1, ρe (la masse volumique de l’eau), et g (le module de l’accélération de la pesanteur à
la surface de la terre).

2. Déterminez alors les conditions aux limites s’appliquant sur le côté OB du barrage.
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3. Donnez les conditions aux limites s’appliquant sur les autres côtés du barrage.

4. Après avoir examiné le barrage, le jeune ingénieur propose l’état de contrainte plan suivant :

σ11 = (k − ρbg)x1 + cx2 + ex21 (8)

σ22 = bx1 + ax2 + dx22 (9)

σ12 = − (ax1 + kx2) (10)

où a, b, c, d, e et k sont des paramètres fonction de ρb, ρe et de l’angle β.

(a) Déterminer les paramètres a et b à partir de la condition aux limites sur le côté OB.

(b) En écrivant l’équation d’équilibre d’un élément de barrage, déterminer les paramètres d et e.

(c) Déterminer les paramètres c et k du problème à partir de la condition aux limites sur le côté OA.

Correction

1. L’équation tensorielle d’équilibre sur un volume infinitésimal d’eau est égale à : div(σeau) + b = 0

div(σeau) + b =

 −
∂Phydro

∂x1

−
∂Phydro

∂x2

+

[
ρeg
0

]
=

[
0
0

]
(11)

Phydro =ρegx1 + C1(x2) + C2 (12)

Phydro =C3(x1) + C4 (13)

Par identification entre (12) et (13) on a,

C1(x2) =0 (14)

C2 =C4 (15)

C3(x1) =ρegx1 (16)

d’où Phydro = ρegx1 + C2 pour satisfaire les équations d’équilibre. Cependant, dans notre cadre, la

surface de l’eau étant libre de contrainte alors Phydro(x1 = 0) = C2 = 0. Ainsi Phydro = ρegx1.

2. Concernant le côté OB, le barrage subit la contrainte appliquée par l’eau (teau→barrage) qui est égale
à :

teau→barrage = −tbarrage→eau = −σeaun
eau
OB = Phydro

[
1 0
0 1

] [
0
−1

]
=

[
0

−Phydro

]
(17)

3. Les conditions aux limites sur les autres côtés du barrage sont :

— Pour le côté OA qui est libre de contrainte (i.e, subit aucune contrainte) : tOA =

[
0
0

]
et

n
barrage
OA = −

√
2
2

[
1
1

]
— Pour le côté AB encastré, on a un déplacement nul dans les direction x1 et x2, donc ux1 = ux2 = 0.

— Récapitulatif des conditions limites appliquées sur le barrage :
Côtés x1 x2
OB tx1 = 0 tx2 = −Phydro
OA tx1 = 0 tx2 = 0
AB ux1 = 0 ux2 = 0
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4. l’état de contrainte du barrage est donné avec σ21 = σ12 :

σbarrage =

[
(k − ρbg)x1 + cx2 + ex21 −(ax1 + kx2)

−(ax1 + kx2) bx1 + ax2 + dx22

]
(18)

a) On sait que sur le côté OB (x2 = 0) du barrage s’applique un vecteur contrainte teau→barrage

donc :

σbarragen
barrage
OB = teau→barrage (19)

[
(k − ρbg)x1 + ex21 −ax1

−ax1 bx1

] [
0
1

]
=

[
0

−Phydro

]
(20)

[
−ax1
bx1

]
=

[
0

ρegx1

]
(21)

Par identification, on peut écrire que les paramètres : a = 0 et b = −ρeg.
b) L’équation tensorielle d’équilibre sur un volume infinitésimal du barrage est égale à : div(σbarrage)+

b = 0.

div(σbarrage) + b =

[
k − ρbg + 2ex1 − k

2dx2

]
+

[
ρbg
0

]
=

[
0
0

]
(22)

D’où e = 0 et d = 0.
c) On détermine les paramètres c et k à partir de la condition aux limites sur le côté OA où x1 = −x2,

tel que :
σbarragenOA = 0 (23)

[
[(k − ρbg)− c]x1 kx1

kx1 −ρegx1

] √
2

2

[
−1
−1

]
=

[
0
0

]
(24)

[
(ρbg + c− 2k)x1
(−k + ρeg)x1

]
=

[
0
0

]
(25)

D’où c = (2ρe − ρb)g et k = ρeg.

Donc

σbarrage =

[
(ρe − ρb)gx1 + (2ρe − ρb)gx2 −ρegx2

−ρegx2 −ρegx1

]
(26)

Exercice 4 : Contraintes dans le sol sous un bâtiment (examen 2019)

Un bâtiment de largeur 2a exerce une pression verticale uniforme p sur le sol. On s’intéresse aux contraintes
dans le sol, que l’on suppose constitué d’un matériau élastique linéaire isotrope.

La solution est connue en tout point Q (voir figure) dans le sol :

σxx = − p

2π
[2(θ1 − θ2) + (sin 2θ1 − sin 2θ2)]

σyy = − p

2π
[2(θ1 − θ2)− (sin 2θ1 − sin 2θ2)]

τxy =
p

2π
(cos 2θ1 − cos 2θ2)

où x, y, θ1 et θ2 sont définis dans la figure ci-dessous.
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a-a

2a

x

y

θ1θ2

α

Q

On rappelle les relations trigonométriques suivantes :

cos2 a+ sin2 a = 1
1− cos 2a = 2 sin2 a

cos a cos b+ sin a sin b = cos(a− b)

1. Diviser la surface du sol (y = 0) en trois régions. Quelles valeurs prennent θ1 et θ2 sur chaque région ?
Vérifier que la solution satisfait les conditions aux limites à la surface du sol.

2. Vers quelles valeurs tendent les contraintes lorsque y → ∞ ? Commenter.

3. Quelle est la valeur de τxy le long de l’axe y ? (Indication : exprimer la relation entre θ1 et θ2 lorsque
x = 0).

4. En déduire la valeur du cisaillement maximal τm = (σI − σII)/2 le long de l’axe y, où σI et σII sont
les contraintes principales.

5. Calculer la valeur et l’emplacement du maximum de τm sur l’axe y. (Indication : considérer les valeurs
que peuvent prendre θ1 ou θ2 sur l’axe y)

6. On considère le tenseur des contraintes σ =

[
A B
B C

]
. Écrire son polynôme caractéristique puis calculer

σI , σII et τm exprimés selon A, B et C.

7. En utilisant l’expression de τm trouvée dans la question 6, montrer que τm = p
π sinα dans le sol (dans

tout le milieu semi-infini), avec α = θ1 − θ2.

8. Pour quelle valeur de α le cisaillement maximal τm est-il le plus grand ? Cela est-il en accord avec la
question 5 ? Tracer le lieu géométrique correspondant au τm maximal.

Correction

1. La surface du sol (y = 0) peut être divisée en trois régions selon la valeur que prend x :
1 x < −a, 2 −a < x < a et 3 x > a.

1 Lorsque x < −a, on a θ1 = θ2 = π, ce qui implique σxx = σyy = τxy = 0. La surface étant libre de
tout effort, la condition aux limites est vérifiée.

2 Lorsque −a < x < a, on a θ1 = π et θ2 = 0, ce qui implique σxx = σyy = −p et τxy = 0. La
surface est soumise à une pression verticale uniforme p, le vecteur de contraintes doit donc être
égal à t =

[
0
p

]
. Le vecteur des contraintes calculé à la surface de normale n =

[
0
−1

]
à partir du

tenseur des contraintes vaut

σ n =

[
σxx τxy
τxy σyy

] [
0
−1

]
=

[
−τxy
−σyy

]
=

[
0
p

]
= t .
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La condition aux limites donc bien vérifiée.

3 Lorsque x > a, on a θ1 = θ2 = 0, ce qui implique σxx = σyy = τxy = 0. La surface étant libre de
tout effort, la condition aux limites est vérifiée.

2. Lorsque y → ∞, les lignes reliant les coins de l’immeuble au point Q deviennent parallèles, on a donc
θ1 − θ2 → 0, ce qui implique σxx → 0, σyy → 0 et τxy → 0. Les efforts se répartissent dans tout le
milieu.

3. Lorsque x = 0, on a θ2 = π − θ1. On a donc

τxy =
p

2π
(cos(2θ1)− cos(2π − 2θ1))

=
p

2π
(cos(2θ1)− cos(−2θ1))

=
p

2π
(cos(2θ1)− cos(2θ1))

= 0 .

4. Puisque τxy = 0, le tenseur des contraintes est diagonal et σxx et σyy sont les contraintes principales.
Ne sachant pas à priori si σxx ⩾ σyy ou si σxx ⩽ σyy, on peut écrire

τm =

∣∣∣∣σxx − σyy
2

∣∣∣∣
=

∣∣∣− p

2π
(sin 2θ1 − sin 2θ2)

∣∣∣
= − p

π
sin 2θ1 =

p

π
sin 2θ2 =

2pay

π(y2 + a2)

où l’on a utilisé le fait que sin 2θ2 = sin(2π − 2θ1) = sin(−2θ1) = − sin 2θ1.

5. Sachant que sur l’axe y, θ1 ∈ ]π2 , π], la valeur maximale de τm = − p
π sin 2θ1 est atteinte en θ1 = 3π

4 ,
ce qui nous donne τm = p

π atteint en y = −a tan 3π
4 = a.

6. Le polynôme caractéristique de σ est

P (λ) = det

([
A− λ B
B C − λ

])
= (A− λ)(C − λ)−B2

= λ2 − (A+ C)λ+ (AC −B2) .

En résolvant P (λ) = 0, on trouve les valeurs propres, qui sont les contraintes principales :

σI =
A+ C +

√
(A− C)2 + (2B)2

2

σII =
A+ C −

√
(A− C)2 + (2B)2

2

et on en déduit le cisaillement maximal

τm =

√
(A− C)2 + (2B)2

2
.
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7. À partir de τm =

√
(A−C)2+(2B)2

2 , on effectue les remplacements A = σxx, B = τxy et C = σyy :

A− C = − p

π
(sin 2θ1 − sin 2θ2) ,

2B =
p

π
(cos 2θ1 − cos 2θ2) ,

(A− C)2 + (2B)2 =
p2

π2
(sin2 2θ1 − 2 sin 2θ1 sin 2θ2 + sin2 2θ2

+ cos2 2θ1 − 2 cos 2θ1 cos 2θ2 + cos2 2θ2)

=
p2

π2
(2− 2 cos(2θ1 − 2θ2))

=
4p2

π2
sin2(θ1 − θ2))√

(A− C)2 + (2B)2

2
=

p

π
sin(θ1 − θ2)

=
p

π
sinα

8. La valeur maximale de τm = p
π sinα est atteinte lorsque sinα = 1. Puisque α ∈ ]0, π] partout dans le

sol, ce maximum est atteint pour α = π
2 . Cela correspond bien au point y = a avec τm = p

π comme
trouvé à la question 5. Le lieu géométrique correspondant au maximum de τm est le lieu où α = π

2 .
Il s’agit d’un demi-cercle de rayon a centré sur l’origine.

a-a
x

y

θ1θ2

α

Qa

Exercice 5 : Exercice de l’examen 2013 (exercice supplémentaire)

Un réservoir contient un fluide homogène et bouge horizontalement vers la droite avec une accélération
constante a1 (cf figure). L’origine du repère (x1, x2) est placée en un point de la surface libre.

a1

h

P

g
θ

x1

x2

O

1. Rappelez les équations d’hydrostatique pour un fluide au repos, sachant que σij = −p δij

2. En supposant que p est une fonction de x1 et x2, et en utilisant les équations du mouvement, trou-
vez l’angle θ d’inclinaison de la surface libre (supposez qu’à la surface libre p = patm, la pression
atmosphérique.

3. Trouvez la pression à un point P dans le fluide.
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Correction :

1.
∂σij
∂xi

+ bj = 0 (27)

p = ρgh+ patm (28)

2. L’accélération est :
a1 = a a2 = a3 = 0 (29)

avec l’équation d’équilibre nous trouvons :

ρa = − ∂p

∂x1
(30)

0 = − ∂p

∂x2
+ ρg (31)

0 = − ∂p

∂x3
(32)

En intégrant la première equation, nous trouvons

p(x1, x2) = −ρax1 + f(x2) (33)

et puis nous dérivons par x2 :
∂p

∂x2
=

∂f

∂x2
= ρg (34)

et par conséquent :
f(x2) = ρgx2 + cst (35)

Donc
p = −ρax1 + ρgx2 + c (36)

Sachant que p = patm à x1 = x2 = 0, nous trouvons c = patm et donc :

p = −ρax1 + ρgx2 + patm

L’équation de la surface peut être trouvé en mettant p(x1, x2) = patm :

patm = −ρax1 + ρgx2 + patm

ce qui mène a

x2 =
a

g
x1

Donc l’angle est

tan θ =
dx2
dx1

=
a

g

3. Trouvez la pression à un point P dans le fluide.

x2 − h

x1
= tan θ (37)

avec l’équation de la surface, nous trouvons :

x2 = h+ x1
a

g

et puis

p(P ) = −ρax1 + ρg

(
h+

x1a

g

)
+ patm = ρgh+ patm
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